Curisies Documentation
Release 0.2

Thomas Ballinger

Mar 08, 2018

Contents

Quickstart
FmtStr
2.1 FmtStr
2.1.1
2.2 FmtStr
2.3 FmtStr
2.3.1
2.3.2
233
2.4 FmtStr
FSArray

3.1 FSArray - Example
3.2 FSArray - Using
3.3 FSArray - API docs

-Example oo

Available colours and styles

-Rationale
-Using ..o

FmtStr - Using str methods

FmtStr-Unicode
FmtStr-lenvswidth
-APIDocs e

Window Objects

4.1 Window Objects - Example
4.2 Window Objects - Context
4.3 Window Objects - API Docs

Input
5.1 Input-
5.2 Input-
5.3 Input-
5.4 Input-
5.5 Input-
5.6 Input-
5.6.1
5.6.2
5.7 Input -

Example L.
Getting Keyboard Events
UsingasaReactor
Context
Notes o e
Events L.

Input - Event Objects

Input - Keypress Strings
APIdocs

Gameloop Example

Examples

()

O 0 00 1 31O\ Lt L

8 About
8.1 RESOUICES v o e e e e e e e s e
8.2 AUthOIS e e e e e e

Python Module Index

Curtsies Documentation, Release 0.2

> curtsies

Curtsies is a Python 2.6+ & 3.3+ compatible library for interacting with the terminal.

Fmt St r objects are strings formatted with colors and styles displayable in a terminal with ANSI escape sequences.
FSArray objects contain multiple such strings with each formatted string on its own row, and can be superimposed
onto each other to build complex grids of colored and styled characters.

Such grids of characters can be efficiently rendered to the terminal in alternate screen mode (no scrollback his-
tory, like Vim, top etc.) by FullscreenWindow objects or to the normal history-preserving screen by
CursorAwareWindow objects. User keyboard input events like pressing the up arrow key are detected by an
Input object. See the Quickstart to get started using all of these classes.

Contents 1

http://en.wikipedia.org/wiki/ANSI_escape_code

Curtsies Documentation, Release 0.2

2 Contents

CHAPTER 1

Quickstart

This is what using (nearly every feature of) Curtsies looks like:

from _ future_ import unicode_literals # convenient for Python 2
import random

from curtsies import FullscreenWindow, Input, FSArray
from curtsies.fmtfuncs import red, bold, green, on_blue, yellow

print (yellow('this prints normally, not to the alternate screen'))
with FullscreenWindow () as window:
with Input () as input_generator:
msg = red(on_blue(bold('Press escape to exit')))
a = FSArray(window.height, window.width)
al0:1, O:msg.width] = [msg]
window.render_to_terminal (a)
for ¢ in input_generator:

if ¢ == '"<ESC>"':
break
elif ¢ == '<SPACE>':
a = FSArray(window.height, window.width)
else:
s = repr(c)
row = random.choice (range (window.height))
column = random.choice (range (window.width-len(s)))
color = random.choice([red, green, on_blue, yellow])
alrow, column:column+len(s)] = [color(s)]

window.render_to_terminal (a)

Paste it into a file and try it out!

Curtsies Documentation, Release 0.2

4 Chapter 1. Quickstart

CHAPTER 2

FmtStr

Fmt Stris a string with each character colored and styled in ways representable by ANSI escape codes.

2.1 FmtStr - Example

>>> from curtsies import fmtstr

>>> red_on_blue = fmtstr(u'hello', fg='red', bg='blue')
>>> from curtsies.fmtfuncs import =«

>>> blue_on_red = blue(on_red(u'there'))

>>> bang = bold(underline (green(u'!')))

>>> full = red_on_blue + blue_on_red + bang

>>> str (full)

—'"\x1b[31lm\x1b[44mhello\x1b[0m\x1b[0m\x1b[34m\x1lb[41lmthere\x1b[0m\x1lb[Om\x1lb[4m\x1b[32m\x1lb[1m!
—\x1b[0m\x1b[0m\x1b[Om'
>>> print (full)
hellothere!

We start here with such a complicated example because it you only need something simple like:

>>> from curtsies.fmtfuncs import =
print (blue (bold(u'Deep blue sea')))>>> print (blue (bold(u'Deep blue sea')))
Deep blue sea

then another library may be a better fit than Curtsies. Unlike other libraries, Curtsies allows these colored strings to be
further manipulated after they are created.

2.1.1 Available colours and styles

The following colours are available with corresponding foreground and background functions:

http://en.wikipedia.org/wiki/ANSI_escape_code

Curtsies Documentation, Release 0.2

Name Foreground | Background
black black () on_black ()
red red () on_red()
green green () on_green ()
yellow yellow () on_yellow ()
blue blue () on_blue ()
magenta | magenta () | on_magenta()
cyan cyan () on_cyan ()
gray gray () on_gray ()

And the following styles with their corresponding functions:

Style Function

bold bold()

dark dark ()
underline | underline ()
blink blink ()
invert invert ()

2.2 FmtStr - Rationale

If all you need is to print colored text, many other libraries also make ANSI escape codes easy to use.

* Blessings (pip install blessings) As of version 0.1.0, Curtsies uses Blessings for terminal capabilities
other than colored output.

e termcolor (pip install termcolor)
e Clint (pip install clint)
e colors (pip install colors)

In all of the libraries listed above, the expression blue ('hi') + ' ' + green('there) or equivalent eval-
uates to a Python string, not a colored string object. If all you plan to do with this string is print it, this is great.
But, if you need to do more formatting with this colored string later, the length will be something like 29 instead of
9; structured formatting information is lost. Methods like center and 1 just won’t properly format the string for
display.

>>> import blessings
>>> term = blessings.Terminal ()

>>> message = term.red_on_green('Red on green?') + ' ' + term.yellow('Ick!")
>>> len (message)

41 # 2!

>>> message.center (50)

u' \x1b[31m\x1b[42mRed on green?\x1b[m\x0f \x1b[33mIck!\xlb[m\x0f '

Fmt St r objects can be combined and composited to create more complicated Fmt St r objects, useful for building
flashy terminal interfaces with overlapping windows/widgets that can change size and depend on each other’s sizes.
One Fmt St r can have several kinds of formatting applied to different parts of it.

>>> from curtsies.fmtfuncs import =«
>>> blue('asdf') + on_red('adsf')
blue ("asdf")+on_red("adsf")

6 Chapter 2. FmtStr

http://en.wikipedia.org/wiki/ANSI_escape_code
https://github.com/erikrose/blessings
https://pypi.python.org/pypi/termcolor
https://github.com/kennethreitz/clint/blob/master/clint/textui/colored.py
https://github.com/verigak/colors/

Curtsies Documentation, Release 0.2

2.3 FmtStr - Using

A Fmt St r can be sliced to produce a new Fmt St r objects:

>>> from curtsies.fmtfuncs import =«
>>> (blue('asdf') + on_red('adsf')) [3:7]
blue ("f")+on_red("ads")

Fmt St r are immutable - but you can create new ones with splice ():

>>> from curtsies.fmtfuncs import =«

>>> f = blue('hey there') + on_red(' Tom!")

>>> g.splice('ot', 1, 3)

>>> g

blue ("h")+"ot"+blue (" there")+on_red(" Tom!")

>>> f.splice('something longer', 2)

blue ("h")+"something longer"+blue ("ot")+blue (" there")+on_red (" Tom!")

Fmt St r greedily absorb strings, but no formatting is applied to this added text:

>>> from curtsies.fmtfuncs import =«

>>> f = blue("The story so far:") + "In the beginning..."
>>> type (f)

<class curtsies.fmtstr.FmtStr>

>>> f

blue ("The story so far:")+"In the beginning..."

It’s easy to turn ANSI terminal formatted strings into Fmt St r:

>>> from curtsies.fmtfuncs import =«
>>> from curtsies import FmtStr

>>> s = str(blue('tom'"))

>>> s

"\x1b[34mtom\x1b[39m'

>>> FmtStr.from str (str(blue('tom')))
blue ("tom")

2.3.1 FmtStr - Using str methods

All sorts of string methods can be used on a Fmt St r, so you can often use F'mt St r objects where you had strings in
your program before:

>>> from curtsies.fmtfuncs import =«
>>> f = blue(underline('As you like it'"))
>>> len (f)

14

>>> f == underline (blue('As you like it'")) + red('")
True

>>> blue (', ').join(['a', red('b"')])

"a"+blue(", ")+red("b")

If Fmt St r doesn’t implement a method, it tries its best to use the string method, which often works pretty well:

>>> from curtsies.fmtfuncs import =«
>>> f = blue(underline('As you like it'"))
>>> f.center (20)

2.3. FmtStr - Using 7

https://docs.python.org/2/library/stdtypes.html#string-methods

Curtsies Documentation, Release 0.2

blue (underline (" As you like it "))
>>> f.count ('i")

2

>>> f.endswith('it"')

True

>>> f.index('you'")

3

>>> f.osplit (' ")
[blue (underline ("As"))

, blue(underline ("you")), blue(underline("like")),
—blue (underline ("1it"))]

[

But formatting information will be lost for attributes which are not the same throughout the initial string:

>>> from curtsies.fmtfuncs import =«

>>> f = bold(red('hi')+'"' '+on_blue('there'))
>>> f
bold(red('hi'))+bold (' ')+bold(on_blue('there'))

>>> f.center (10)
bold (" hi there ")

2.3.2 FmtStr - Unicode

In Python 2, you might run into something like this:

>>> from curtsies.fmtfuncs import =

>>> red(u'hi')

red('hi'")

>>> red('hi')

ValueError: unicode string required, got 'hi'

Fmt St r requires unicode strings, so in Python 2 it is convenient to use the unicode_literals compiler directive:

>>> from _ future import unicode_literals
>>> from curtsies.fmtfuncs import =«

>>> red('hi')

red('hi')

2.3.3 FmtStr - len vs width

The amount of horizontal space a string takes up in a terminal may differ from the length of the string returned by
len (). Fmt St r objects have a width property useful when writing layout code:

>>> #encoding: utf8

>>> from curtsies.fmtfuncs import =«

>>> fullwidth = blue(u'width')

>>> len (fullwidth), fullwidth.width, fullwidth.s
(9, 13, u'\uffde\uffs55\uffdc\uffdcwidth")

>>> combined = red(u'a')

>>> len (combined), combined.width, combined.s
(2, 1, u'a\u0324")

As shown above, full width characters can take up two columns, and combining characters may be combined with the
previous character to form a single grapheme. Curtsies uses a Python implementation of wewidth to do this calculation.

8 Chapter 2. FmtStr

http://en.wikipedia.org/wiki/Halfwidth_and_fullwidth_forms
http://en.wikipedia.org/wiki/Combining_character
https://github.com/jquast/wcwidth

Curtsies Documentation, Release 0.2

2.4 FmtStr - APl Docs

curtsies. fmtstr (string, *args, **kwargs)
Convenience function for creating a FmtStr

>>> fmtstr('asdf', 'blue', 'on_red', 'bold')
on_red(bold(blue('asdf')))

>>> fmtstr('blarg', fg='blue', bg='red', bold=True)
on_red (bold(blue('blarg')))

class curtsies.FmtStr (*components)
A string whose substrings carry attributes (which may be different from one to the next).

copy_with_new_atts (**attributes)
Returns a new FmtStr with the same content but new formatting

copy_with_new_str (new_str)
Copies the current FmtStr’s attributes while changing its string.

join (iterable)
Joins an iterable yielding strings or FmtStrs with self as separator

splice (new_str, start, end=None)
Returns a new FmtStr with the input string spliced into the the original FmtStr at start and end. If end is
provided, new_str will replace the substring self.s[start:end-1].

split (sep=None, maxsplit=None, regex=False)
Split based on seperator, optionally using a regex

Capture groups are ignored in regex, the whole pattern is matched and used to split the original FmtStr.

splitlines (keepends=False)
Return a list of lines, split on newline characters, include line boundaries, if keepends is true.

width
The number of columns it would take to display this string

width aware_ slice (index)
Slice based on the number of columns it would take to display the substring

Fmt St r instances respond to most str methods as you might expect, but the result of these methods sometimes
loses its formatting.

2.4. FmtStr - APl Docs 9

Curtsies Documentation, Release 0.2

10 Chapter 2. FmtStr

CHAPTER 3

FSArray

FSArray is a two dimensional grid of colored and styled characters.

3.1 FSArray - Example

>>> from curtsies import FSArray, fsarray

>>> from curtsies.fmtfuncs import green, blue, on_green

>>> a = fsarray([u'x' x 10 for _ in range(4)], bg='blue', fg='red')
>>> a.dumb_display ()

* ok k ok ok ok k ok ok ok

*kkkhkkhkkkkk Kk

Kk hkkkkhkkk kKK

* ok k ok ok ok k ok ok k

>>> a[l:3, 3:7] = fsarray([green(u'msg:"),

e blue (on_green(u'hey! ")) 1)

>>> a.dumb_display ()
*kkkhkkhkkkkkk

* X KMSJ: * **
**xxhey!xxx

KAk Kk kKX KKKk K

fsarray is a convenience function returning a FSArray constructed from its arguments.

3.2 FSArray - Using

FSArray objects can be composed to build up complex text interfaces:

>>> import time
>>> from curtsies import FSArray, fsarray, fmtstr
>>> def clock():

return fsarray([u'::'+fmtstr(u'time')+u'::",

11

Curtsies Documentation, Release 0.2

fmtstr(time.strftime ('$H:%M:%S") .decode ('ascii'))])

>>> def square (width, height, char):
return fsarray (charxwidth for _ in range (height))

>>> a = square (40, 10, u'+")

>>> a[2:8, 2:38] = square (36, 6, u'.")

>>> ¢ = clock()

>>> af[2:4, 30:38] = c

>>> a[6:8, 30:38] = ¢

>>> message = fmtstr (u'compositing several FSArrays').center (40, u'-")
>>> af[4:5, :] = [message]

>>>

>>> a.dumb_display ()
+++++++++ A+
e e A 20 s e e s e e e e a2 o B e

L2 o B[S
S OO 21:59:31++
—————— compositing several FSArrays——————
o e ++
I o B ST 8
o e e e e 21:59:31++

L o e e AR s S S
S

An array like shown above might be repeatedly constructed and rendered with a curtsies.window object.

Slicing works like it does with a Fmt St r, but in two dimensions. FSArray are mutable, so array assignment syntax
can be used for natural compositing as in the above exaple.

If you’re dealing with terminal output, the width of a string becomes more important than it’s length (see FmtStr - len
vs width).

In the future FSArray will do slicing and array assignment based on width instead of number of characters, but this
is not currently implemented.

3.3 FSArray - APl docs

curtsies. fsarray (list_of FmtStrs_or_strings, width=None) — FSArray
Returns a new FSArray of width of the maximum size of the provided strings, or width provided, and height
of the number of strings provided. If a width is provided, raises a ValueError if any of the strings are of length
greater than this width

class curtsies.FSArray (num_rows, num_columns, *args, **kwargs)
A 2D array of colored text.

Internally represented by a list of FmtStrs of identical size.

classmethod diff (a, b, ignore_formatting=False)
Returns two FSArrays with differences underlined

dumb_display ()
Prints each row followed by a newline without regard for the terminal window size

height
The number of rows

12 Chapter 3. FSArray

Curtsies Documentation, Release 0.2

shape
tuple of (len(rows, len(num_columns)) numpy-style shape

width
The number of columns

3.3. FSArray - APl docs 13

Curtsies Documentation, Release 0.2

14 Chapter 3. FSArray

CHAPTER 4

Window Obijects

Windows successively render 2D grids of text (usually instances of F'SArray) to the terminal.

A window owns its output stream - it is assumed (but not enforced) that no additional data is written to this stream
between renders, an assumption which allowing for example portions of the screen which do not change between
renderings not to be redrawn during a rendering.

There are two useful window classes, both subclasses of BaseWindow. FullscreenWindow renders to
the terminal’s alternate screen buffer (no history preserved, like command line tools Vim and top) while
CursorAwareWindow renders to the normal screen. It is also is capable of querying the terminal for the cur-
sor location, and uses this functionality to detect how a terminal moves its contents around during a window size
change. This information can be used to compensate for this movement and prevent the overwriting of history on the
terminal screen.

4.1 Window Obijects - Example

>>> from curtsies import FullscreenWindow, fsarray

>>> import time

>>> with FullscreenWindow () as win:
win.render_to_terminal (fsarray([u'asdf', u'asdf']))
time.sleep (1)
win.render_to_terminal (fsarray([u'asdf', u'gqwer']))
time.sleep (1)

4.2 Window Objects - Context

render_to_terminal () should only be called within the context of a window. Within the context of an instance
of BaseWindow it’s important not to write to the stream the window is using (usually sys.stdout). Terminal
window contents and even cursor position are assumed not to change between renders. Any change that does occur in
cursor position is attributed to movement of content in response to a window size change and is used to calculate how
this content has moved, necessary because this behavior differs between terminal emulators.

15

http://invisible-island.net/xterm/ctlseqs/ctlseqs.html#The%20Alternate%20Screen%20Buffer

Curtsies Documentation, Release 0.2

Entering the context of a Fullscreenwindow object hides the cursor and switches to the alternate terminal screen.
Entering the context of a CursorAwarewindow hides the cursor, turns on cbreak mode, and records the cursor
position. Leaving the context does more or less the inverse.

4.3 Window Objects - APl Docs

class curtsies.window.BaseWindow (out_stream=None, hide_cursor=True)

array_from_text (msg)
Returns a FSArray of the size of the window containing msg

get_term hw()
Returns current terminal height and width

height
The current height of the terminal window

width
The current width of the terminal window

class curtsies.FullscreenWindow (out_stream=None, hide_cursor=True)

2D-text rendering window that dissappears when its context is left

FullscreenWindow will only render arrays the size of the terminal or smaller, and leaves no trace on exit (like
top or vim). It never scrolls the terminal. Changing the terminal size doesn’t do anything, but rendered arrays
need to fit on the screen.

Note: The context of the FullscreenWindow object must be entered before calling any of its methods.

Within the context of CursorAwareWindow, refrain from writing to its out_stream; cached writes will be inac-
curate.

Constructs a FullscreenWindow
Parameters
* out_stream (file) - Defaults to sys.__stdout__
e hide_cursor (bool) — Hides cursor while in context

render_to_terminal (array, cursor_pos=(0, 0))
Renders array to terminal and places (0-indexed) cursor

Parameters array (FSArray)— Grid of styled characters to be rendered.

* If array received is of width too small, render it anyway
* If array received is of width too large,

* render the renderable portion

o If array received is of height too small, render it anyway
* If array received is of height too large,

* render the renderable portion (no scroll)

16

Chapter 4. Window Objects

Curtsies Documentation, Release 0.2

class curtsies.CursorAwareWindow (out_stream=None, in_stream=None, keep_last_line=False,

hide_cursor=True, extra_bytes_callback=None)

Renders to the normal terminal screen and can find the location of the cursor.

Note: The context of the CursorAwareWindow object must be entered before calling any of its methods.

Within the context of CursorAwareWindow, refrain from writing to its out_stream; cached writes will be in-
accurate and calculating cursor depends on cursor not having moved since the last render. Only use the ren-
der_to_terminal interface for moving the cursor.

Constructs a CursorAware Window

Parameters

out_stream (file)— Defaults to sys.__stdout__
in_stream (file)— Defaults to sys.__stdin__

keep_last_line (bool) — Causes the cursor to be moved down one line on leaving
context

hide_cursor (bool) - Hides cursor while in context

extra_bytes_callback (f (bytes) —> None)— Will be called with extra bytes
inadvertantly read in get_cursor_position(). If not provided, a ValueError will be raised
when this occurs.

get_cursor_position ()
Returns the terminal (row, column) of the cursor

0-indexed, like blessings cursor positions

get_cursor_vertical diff ()
Returns the how far down the cursor moved since last render.

Note:

If another get_cursor_vertical_diff call is already in progress, immediately returns zero. (This

situation is likely if get_cursor_vertical_diff is called from a SIGWINCH signal handler, since sigwinches
can happen in rapid succession and terminal emulators seem not to respond to cursor position queries
before the next sigwinch occurs.)

render_to_terminal (array, cursor_pos=(0, 0))
Renders array to terminal, returns the number of lines scrolled offscreen

Returns Number of times scrolled

Parameters array (FSArray)— Grid of styled characters to be rendered.

If array received is of width too small, render it anyway
if array received is of width too large, render it anyway
if array received is of height too small, render it anyway

if array received is of height too large, render it, scroll down, and render the rest of it, then
return how much we scrolled down

4.3. Window Objects - APl Docs 17

Curtsies Documentation, Release 0.2

18 Chapter 4. Window Objects

CHAPTER B

Input

Input objects provide user keypress events and other control events.

5.1 Input - Example

>>> from curtsies import Input

>>> with Input (keynames='curtsies') as input_generator:
for e in Input():
if e in (u'<ESC>', u'<Ctrl-d>"):
break
else:
print (e)

5.2 Input - Getting Keyboard Events

The simplest way to use an Tnput object is to iterate over it in a for loop: each time a keypress is detected or other
event occurs, an event is produced and can be acted upon. Since it’s iterable, next () can be used to wait for a single
event. send () works like next () but takes a timeout in seconds, which if reached will cause None to be returned
signalling that no keypress or other event occured within the timeout.

Key events are unicode strings, but sometimes event objects (see Event) are returned instead. Built-in events signal
SigIntEvent events from the OS and PasteEvent consisting of multiple keypress events if reporting of these
types of events was enabled in instantiation of the Tnput object.

5.3 Input - Using as a Reactor

Custom events can also be scheduled to be returned from Input with callback functions created by the event trigger
methods.

19

Curtsies Documentation, Release 0.2

Each of these methods returns a callback that will schedule an instance of the desired event type:

» Using a callback created by event_trigger () schedules an event to be returned the next time an event is
requested, but not if an event has already been requested (if called from another thread).

e threadsafe_event_trigger () does the same, but may notify a concurrent request for an event so that
the custom event is immediately returned.

* scheduled_event_trigger () schedules an event to be returned at some point in the future.

5.4 Input - Context

next () and send () must be used within the context of that Tnput object.

Within the (context-manager) context of an Input generator, an in-stream is put in raw mode or cbreak mode, and
keypresses are stored to be reported later. Original tty attributes are recorded to be restored on exiting the context. The
SigInt signal handler may be replaced if this behavior was specified on creation of the Tnput object.

5.5 Input - Notes

Input takes an optional argument keynames for how to name keypress events, which is 'curtsies' by default.
For compatibility with curses code, you can use 'curses' names, but note that curses doesn’t have nice key names
for many key combinations so you’ll be putting up with names like u'\xel' for option-7j and '\x86"' for
ctrl-option-f. Pass "plain' for this parameter to return a simple unicode representation.

PasteEvent objects representing multiple keystrokes in very rapid succession (typically because the user pasted in
text, but possibly because they typed two keys simultaneously). How many bytes must occur together to trigger such
an event is customizable via the paste_threshold argument to the Tnput object - by default it’s one greater than
the maximum possible keypress length in bytes.

If sigint_event=True is passed to Tnput, SIGINT signals from the operating system (which usually raise a
KeyboardInterrupt exception) will be returned as SigIntEvent instances.

To set a timeout on the blocking get, treat it like a generator and call . send (t imeout) . The call will return None
if no event is available.

5.6 Input - Events

To see what a given keypress is called (what unicode string is returned by Terminal .next ()), try python -m
curtsies.events and play around. Events returned by Tnput fall into two categories: instances of subclasses
of Event and Keypress strings.

5.6.1 Input - Event Objects

class curtsies.events.Event

class curtsies.events.SigIntEvent
Event signifying a SIGINT

class curtsies.events.PasteEvent
Multiple keypress events combined, likely from copy/paste.

The events attribute contains a list of keypress event strings.

20 Chapter 5. Input

Curtsies Documentation, Release 0.2

class curtsies.events.ScheduledEvent (when)
Event scheduled for a future time.

Parameters when (f1oat)— unix time in seconds for which this event is scheduled

Custom events that occur at a specific time in the future should be subclassed from ScheduledEvent.

5.6.2 Input - Keypress Strings

Keypress events are Unicode strings in both Python 2 and 3 like:
e a, 4, %, ?
e <UP>, <DOWN>, <RIGHT>, <LEFT>
e <SPACE>, <TAB>, <F1>, <F12>
¢ <BACKSPACE>, <HOME>, <PADENTER>, <PADDELETE>
e <Ctrl+a>, <Ctrl+SPACE>
e A, <Shift-TAB>, ?
e <Esc+a>, <Esc+A>, <Esc+Ctrl-A>
¢ <Esc+Ctrl+A>
* <Meta-J>, <Meta-Ctrl-J> (this is old-style meta)
Likely points of confusion for keypress strings:
¢ Enteris <Ctrl-ij>

* Modern meta (the escape-prepending version) key is <Esc+a> while control and shift keys are <Ctrl-a>
(note the + vs -)

e Letter keys are capitalized in <Esc+Ctr1-A> while they are lowercase in <Ct r1-a> (this should be fixed in
the next api-breaking release)

* Some special characters lose their special names when used with modifier keys, for example: <TAB>,
<Shift-TAB>, <Esc+Ctrl-Y>, <Esc+Ctrl-I> are all produced by the tab key, while vy, Y,
<Shift-TAB>, <Esc+y>, <Esc+Y>, <Esc+Ctrl-y>, <Esc+Ctrl-Y>, <Ctrl-Y> are all
produced by the y key. (This should really be figured out)

5.7 Input - APl docs

class curtsies.Input (in_stream=None, keynames="curtsies’, paste_threshold=8, sigint_event=False,

signint_callback_provider=None)
Keypress and control event generator

Returns an Input instance.
Parameters
* in_stream (file)— Defaults to sys.__stdin__

* keynames (string)— How keypresses should be named - one of ‘curtsies’, ‘curses’, or
‘plain’.

* paste_threshold (int) — How many bytes must be read in one os.read on the
in_stream to trigger the keypresses they represent to be combined into a single paste event

5.7. Input - APl docs 21

Curtsies Documentation, Release 0.2

* sigint_event (bool) — Whether SIGINT signals from the OS should be intercepted
and returned as SigIntEvent objects

unget_bytes (string)
Adds bytes to be internal buffer to be read

This method is for reporting bytes from an in_stream read not initiated by this Input object

send (timeout=None)
Returns an event or None if no events occur before timeout.

event_trigger (event_type)
Returns a callback that creates events.

Returned callback function will add an event of type event_type to a queue which will be checked the next
time an event is requested.

scheduled event_trigger (event_type)
Returns a callback that schedules events for the future.

Returned callback function will add an event of type event_type to a queue which will be checked the next
time an event is requested.

threadsafe_event_trigger (event_tfype)
Returns a callback to creates events, interrupting current event requests.

Returned callback function will create an event of type event_type which will interrupt an event request if
one is concurrently occuring, otherwise adding the event to a queue that will be checked on the next event
request.

22

Chapter 5. Input

CHAPTER O

Gameloop Example

Use scheduled events for realtime interative programs:

from _ future import unicode_literals, division

import time

from curtsies import FullscreenWindow, Input, FSArray

from curtsies.fmtfuncs import red, bold, green, on_blue, yellow, on_red

import curtsies.events

class Frame (curtsies.events.ScheduledEvent) :
pass

class World(object) :
def _ init_ (self):

self.s = 'Hello'
def tick (self):
self.s += "'
self.s = self.s[max(l, len(self.s)-80):]

def process_event (self, e):
self.s += str(e)

def realtime (fps=15):
world = World()
dt = 1/fps

reactor = Input ()
schedule_next_frame = reactor.scheduled_event_trigger (Frame)
schedule_next_frame (when=time.time ())

with reactor:
for e in reactor:
if isinstance (e, Frame):
world.tick ()
print (world.s)

23

Curtsies Documentation, Release 0.2

when = e.when + dt

while when < time.time () :

when += dt
schedule_next_frame (when)
elif e == u'<ESC>"':
break
else:
world.process_event (e)

realtime ()

Paste it into a file and try it out!

24

Chapter 6. Gameloop Example

CHAPTER /

Examples

¢ Tic-Tac-Toe

enter a numbar, @-8
X|o|x

* Bpython-curtsies uses curtsies

25

https://github.com/bpython/curtsies/blob/master/examples/tictactoeexample.py
https://github.com/bpython/curtsies/blob/master/examples/gameexample.py
http://ballingt.com/2013/12/21/bpython-curtsies.html

Curtsies Documentation, Release 0.2

e
<SPACE>

<RETURN>

a
<SPACE>

<SPACE>
1

<RETURN>

<RETURN>
b

26 Chapter 7. Examples

http://www.youtube.com/watch?v=lwbpC4IJlyA

CHAPTER 8

About

8.1

Resources

I’ve written a little bit about Curtsies on my blog.

The source and issue tracker for Curtsies are on Github.

A good place to ask questions about Curtsies is #bpython on irc.freenode.net.

8.2

Authors

Curtsies was written by Thomas Ballinger to create a frontend for bpython that preserved terminal history.

Thanks so much to the many people that have contributed to it!

Amber Wilcox-O’Hearn - paired on a refactoring

Darius Bacon - lots of great code review

Fei Dong - work on making FmtStr and Chunk immutable

Julia Evans - help with Python 3 compatibility

Lea Albaugh - beautiful Curtsies logo

Rachel King - several bugfixes on blessings use

Scott Feeney - inspiration for this project - the original title of the project was “scott was right”
Zach Allaun, Mary Rose Cook, Alex Clemmer - early code review of input and window

Chase Lambert - API redesign conversation

27

http://ballingt.com/2014/05/13/bpython-curtsies-release.html
https://github.com/bpython/curtsies
http://webchat.freenode.net/?channels=bpython
http://ballingt.com
http://bpython-interpreter.org/

Curtsies Documentation, Release 0.2

28 Chapter 8. About

Python Module Index

C

curtsies.fmtfuncs,9
curtsies.formatstring,5
curtsies.window, 15

29

Curtsies Documentation, Release 0.2

30 Python Module Index

Index

A

array_from_text()
method), 16

(curtsies.window.BaseWindow

B

BaseWindow (class in curtsies.window), 16

C

copy_with_new_atts() (curtsies.FmtStr method), 9
copy_with_new_str() (curtsies.FmtStr method), 9
CursorAwareWindow (class in curtsies), 16
curtsies.fmtfuncs (module), 9
curtsies.formatstring (module), 5

curtsies.window (module), 15

D

diff() (curtsies.FSArray class method), 12
dumb_display() (curtsies.FSArray method), 12

E

Event (class in curtsies.events), 20
event_trigger() (curtsies.Input method), 22

F

FmtStr (class in curtsies), 9

fmtstr() (in module curtsies), 9

FSArray (class in curtsies), 12

fsarray() (in module curtsies), 12
FullscreenWindow (class in curtsies), 16

G

get_cursor_position()
method), 17

get_cursor_vertical_diff() (curtsies.CursorAwareWindow
method), 17

get_term_hw() (curtsies.window.BaseWindow method),
16

(curtsies.CursorAware Window

H

height (curtsies.FSArray attribute), 12
height (curtsies.window.BaseWindow attribute), 16

Input (class in curtsies), 21

J

join() (curtsies.FmtStr method), 9

P

PasteEvent (class in curtsies.events), 20

R

render_to_terminal()
method), 17

render_to_terminal()
method), 16

(curtsies.CursorAware Window

(curtsies.FullscreenWindow

S

scheduled_event_trigger() (curtsies.Input method), 22
ScheduledEvent (class in curtsies.events), 20

send() (curtsies.Input method), 22

shape (curtsies.FSArray attribute), 12

SigIntEvent (class in curtsies.events), 20

splice() (curtsies.FmtStr method), 9

split() (curtsies.FmtStr method), 9

splitlines() (curtsies.FmtStr method), 9

T

threadsafe_event_trigger() (curtsies.Input method), 22

unget_bytes() (curtsies.Input method), 22

W

width (curtsies.FmtStr attribute), 9

width (curtsies.FSArray attribute), 13

width (curtsies.window.BaseWindow attribute), 16
width_aware_slice() (curtsies.FmtStr method), 9

31

	Quickstart
	FmtStr
	FmtStr - Example
	Available colours and styles

	FmtStr - Rationale
	FmtStr - Using
	FmtStr - Using str methods
	FmtStr - Unicode
	FmtStr - len vs width

	FmtStr - API Docs

	FSArray
	FSArray - Example
	FSArray - Using
	FSArray - API docs

	Window Objects
	Window Objects - Example
	Window Objects - Context
	Window Objects - API Docs

	Input
	Input - Example
	Input - Getting Keyboard Events
	Input - Using as a Reactor
	Input - Context
	Input - Notes
	Input - Events
	Input - Event Objects
	Input - Keypress Strings

	Input - API docs

	Gameloop Example
	Examples
	About
	Resources
	Authors

	Python Module Index

